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Quantum molecular similarity measures (QMSM) are succinctly described and justified as 
a tool to obtain ordered patterns within a given set of molecular electronic structures. The nat- 
ure of QMSM appears also to establish the way leading towards a discrete representation of a 
given electronic structure, when using a quantum mechanical framework, in the form of some 
n-dimensional column vector. As a consequence, quantitative structure-properties relation- 
ships (QSPR) can be considered, in general, to be coincident with a procedure to obtain the dis- 
crete approximate representation vector elements of some unknown operator whose 
expectation values can be associated with a chosen observed experimental property value. 

1. Introduction 

In the last fifteen years the theoretical and practical formalism of  Q M S M  has 
been developed [1] in our labora tory  and by other authors  [2]. Much  older, how- 
ever, appears  to be the idea to obtain empirical relationships between handy param-  
eters and molecular  properties [3], and recent procedures seem to be very success- 
ful as a tool to predict  new molecular  structures with taylor-made propert ies [4]. As 
recently Q M S M  have been used as parameters  in quanti tat ive structure-activity 
relationships (QSAR)  [5], it seems the time has arrived to search for the possible 
practical  formal ism allowing Q M S M  to be used in Q S P R  or Q S A R  environments.  

Beyond this initial landscape, the success of  Q S A R  in the realm of  molecular  
design seems to be beyond  doubt.  Also certain is the fact that  no comprehensive jus- 
tification, other  than the empirical evidence and pragmatism, has so far been given 
to make  fundament  this situation. The continued successful use of  Q S P R  tech- 
niques cannot  be an aleatory product  based on statistical factors only: it seems to 
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preclude the evidence of an existing solid theoretical reason not yet described. A 
new idea, associated both with the QMSM theoretical framework and the quantum 
mechanical operator expectation value concept, will provide in the following pages 
a solid ground for this task. 

For this purpose, in the present paper, we first give a short review of the defini- 
tion and meaning of QMSM. The way leading to the discrete n-dimensional repre- 
sentation of a molecular set is presented afterwards. Next, the use one can make 
of the previous molecular discrete representation is discussed, introducing Mende- 
leev's postulates. Then, a brief overview of the QSPR techniques precedes the defi- 
nition of the discrete expectation value concept and, finally, the theoretical 
foundation of QSPR is exposed. 

2. QMSM 

The basic idea underlying the concept of QMSM is trivial. Given two molecules, 
{mA, ms}, suppose the Schr6dinger equation is solved at an arbitrary level for 
both structures, so the respective wavefunctions, {kv.4, ~Ps}, for a given state of both 
electronic structures are known. A density matrix, {PA, PS}, connected with the 
respective wavefunction pair can be computed in the usual way [6]. 

Using a definite positive operator O as a weight, a QMSM involving the mole- 
cules {mA, ms} is defined as the following integral: 

zAs[Ol = f f pA(rl)S?(rl,r2)ps(r2) dr2, (1) 

where {rl, rE} are sets of electron coordinates associated with the corresponding 
density functions. In this framework, the QMSM zAS are non-negative real num- 
bers. Originally [1 a], the weighting operator was chosen as a Dirac delta function, 
~2 = 6(rl  - r2), and the involved densities, {PA, PS},  as the first order density func- 
tions; when using this, the QMSM as defined in eq. (1) becomes the so-called 
overlap-like measure: 

zAB = f dr. (2) 

Many other QMSM can be defined, even within a more general conceptual con- 
text, see for example refs. [11] and [In] for more details. Among all the various possi- 
bilities, the one most conspicuously used is the so-called Coulomb-like measure, 
defined as 

z B[ri- ] = j / p (,l)lrl - r=l-a0s(,=) dr, (3) 

which transforms into the Coulomb molecular energy when considering the self- 
similarity measure Z~A [ri-21]. Also, triple [1 k] or multiple [1 1] QMSM can be defined 



R. Carb6 et al. / Quantum molecular similarity measures 239 

without other problems than those of  augmenting the complexity within the defini- 
tion of  the involved integral measures. Triple QMSM are easily constructed when 
considering a third molecule {mc} besides the initial set {mA, ms}.  Then, using the 
attached density {pc(r)} instead of the operator Y2 in definition (1), the following 
measure appears: 

= ZAB[PC] = /pA( r )pc ( r )pa ( r )  dr,  ZAB;C (4) 

giving one of  the five possible definitions of QMSM involving three density func- 
tions. As another example, if Y2 is substituted by the off-diagonal element of  the 
density matrix pc(rl,  r2), an alternative form, different from the previous QMSM 
definition (4), is obtained as the following integral: 

z'As;c= f f pA(rl)PC(rl,r2)ps(r2) drl dr2. (5) 

In any case, the previous discussion shows that a wide collection of QMSM can 
be defined in a unique way when the molecular density matrices are known. 

3. Di scre te  representat ion  o f  a mo lecu lar  set 

Let us suppose a given set of molecular structures, M = {mi}. To every element 
of  M can be attached a density matrix element belonging to a set P = {pi}. Then, 

Vmi e M--~ 3pi ~ P =~ mr ¢* pI . (6) 

Once a particular QMSM form is chosen, for every ordered pair of  P ® P  a 
matrix element can be computed: 

zjz = (pjlY2lpz) (7) 

and so a similarity matrix Z = {zjx} can be build up. The computat ion of  each inte- 
gral in eq. (7) needs a process of optimization, in order to align the involved mole- 
cules to obtain a maximal value of z.rl. This optimization process may transform 
the natural  positive definitness of the matrix Z because of  the different relative 
position in space for the same molecule in front of the rest. 

Partit ioning the similarity matrix Z into a row hypervector with column ele- 
ments {ZI}, 

Z = (zl ,z2, .  - . , z i , .  - .) , 

one can see that the column elements are 

(8) 

z i  = {zj ;vJ} e z  (9) 
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and zl may be considered to be a discrete matrix representation of Pz within the 
set P acting as a basis, set. Thus, 

mz ¢* Pl ¢¢' z I .  (10) 

Furthermore,  nothing opposes the use of auxiliary molecular sets A = {aK} 
and their attached densities D = {Tr } to augment the vector dimensionality, repre- 
senting a given molecule on M. That  is, a new vector can easily be constructed as 
the direct sum, 

ur = zz @ vI ~ U,  (11) 

where 

vz = {vKz = < T K I S ? I p z > ; V K }  e V .  (12) 

The final conclusion at this stage may be that by choosing a QMSM and after 
computing a similarity matrix, a vector representation of the molecular density 
function in a given molecular set is obtained. Thus, a vector representation of  a 
given molecule in the chosen basis set of molecular density functions can be con- 
structed as 

VmxzM- - '~3u l c  U ~ mz ¢* ui .  (13) 

Proceeding in this way, which can be extended to QSPR methods,  one can say 
that  to a given molecular structure mt apoint-molecule ui is associated. A given col- 
lection U = Z @ V of  point-molecules will be called a molecular point-cloud. 

4. Mende leev ' s  postula tes ,  molecu la r  set o rder  a n d  visual izat ion 

The molecular point-cloud U = {uz} as defined in eqs. (11) and (12) may be 
manipulated afterwards in order to extract information from its elements or to 
obtain new values which, in turn, can be used by other algorithms. Visualization of 
the set U may be very helpful as a tool to gather information on the relationships 
between members of the set M [ l l ,  ln]. This possibility has been used in various 
ways, as well as the related option to employ QMSM or derived similarity indices, 
obtained from the manipulat ion of QMSM matrix elements, to obtain some order- 
ing among the elements of  the set M. Any system which permits to be studied by 
means of  quantum mechanics will be called a quantum object. The principles gov- 
erning these possibilities have been called Mendeleev's postulates [11,1 n]. They can 
be summarized as follows: 

1. Every quantum object in a given state can be described by its density matrix 
elements. 

2. Quantum objects can be compared by means of a quantum similarity measure. 
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3. Projection of a quantum object set into some n-dimensional space is always 
feasible. 

4. A quantum object set ordering exists. 

The Mendeleev's postulates can be associated with the following points of  the 
theory: Postulate 1 is a usual quantum mechanical assumption, postulate 2 
describes the starting point for the use of QMSM allowing the definitions of sec- 
tion 2, postulate 3 describes the reasoning carried out in section 3, and postulate 4 
is nothing more than the application of Zermelo's theorem to the developed 
Q M S M  theoretical context. More details can be found in refs. [l j, 11, lm]. 

Postulates 3 and 4 permit a pictorial visualization of the set M, using the repre- 
sentation form of  every molecule in the set M contained in the molecular point- 
cloud U, as described in section 3. Reference [lg] established the basic concepts 
underlying these procedures. 

5. QSPR 

Having reached this point that so far described the discrete representation of 
molecular structures and their possible use, one can realize that this fact is also con- 
necting the previous formalism with parent theoretical procedures used to obtain 
information on QSPR or particularly on QSAR. 

A typical QSPR procedure consists of  attaching to every element mz E M a vector 
q1 ~ Q, whose elements are chosen in an empirical way from various sources. 
Some are certainly chosen as molecular atomic charges or quantum chemical 
related parameters,  but others come from empirical sources like octanolwater par- 
tition coefficients or may even constitute a purely binary information variable; 
others, finally, bear empirical structural intuitive bonding schemes like the connec- 
tivity related indices [7]. 

However, the fact is that, although in quite different ways, QMSM and QSPR 
techniques both attach a vector to every element of  M. As in the QMSM case, one 
can call this vector a point-molecule. Next step in the QSPR framework consists 
of  connecting a given molecular property value 7r with the molecular vector repre- 
sentation q throughout  a linear equation, such as 

xrq = 7r, (14) 

which can also be observed as a linear functional transformation of the discrete 
point-molecule q by means of  a dual space vector x r, a vector whose set of  coeffi- 
cient elements can be easily obtained using a standard least-squares calculation. In 
QSPR, unless one chooses in a very restricted way the elements of  the point-mole- 
cule q, as discussed some years ago [lb,8], no direct meaning whatsoever can be 
attached to the elements of  the vector x. 
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6. Discrete expectation values 

The form of eq. (14) in a QMSM environment may be written in a parallel 
manner  as 

wTu = 7r, ( 1 5 )  

where the constant ~r role as a molecular property is preserved here too. However, 
contrary to eq. (14), to the coefficient vector w elements, which may be obtained by 
a least-squares technique as in the QSPR framework, one can attach a coherent 
meaning to the whole QMSM theory developed so far. 

To prove this, let us consider again thepoint-molecules u1 ~ U, which, as defined 
in section 3, are nothing but a discrete representation of the densities pr e P. The 
representation of the molecular point-cloud {uz} vectors is obtained in the space 
where the basis P @ D is active. 

Thus, u1 ¢* Pl, VI. At the same time, as it has been employed when defining triple 
QMSM in eqs. (4) or (5), the density pI has also the structure of  a positive definite 
operator, which in the QMSM context possesses in turn the matrix representation 
of the point-molecule ui. From the quantum mechanical point of view, given any 
observable O, a given Hermitian operator f2 attached to it must  exist, so the expec- 
tation value (f2) i  in the system described by p1 may formally be obtained as 

( ~ ) I  = (~ IPI )  = / ~PI dr. (16) 

Then, to the operator ~ there can be attached the discrete vector representation 
w using the same basis set as contained in P @ D, in such a way that both vectors 
u1 and w belong to the same discrete n-dimensional space representation. Thus, 
with the scalar product  

( 0 ) i  ~ wrui (17) 

can be associated the approximated expectation value computed within this 
space. 

The contents of this section and the related material from section 3 are a conse- 
quence of  the usual computat ional  practice in quantum chemistry and related 
quan tum mechanical applications. Although they may appear unfamiliar to a 
reader, accustomed to square matrix representations of operators, it must  be kept 
in mind that  square matrix vector spaces may be made isomorphic to column 
matrix vector spaces of the appropriate dimension. A very good exposition of  the 
fundament  of all that  is said here, al though in a somewhat different context, mainly 
attributable to the different discussed applications, can be found in the monograph  
of  Bohm and Gadella [9]. 
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7. Theoret ical  founda t ion  of  QSPR 

As it has been discussed earlier, every molecular property can be seen as some 
expectation value of some unknown operator whose matrix representation ele- 
ments may be evaluated by means of eq. (17) using a least-squares technique. A 
more general form ofeq. (17) may be considered here. Let us define a new vector of 
QMSM origin obtained by some, even non-linear, transformation of the original 
similarity vector space: 

g = R ( u ) ,  (18) 

where R(u)  represents any possible mathematical manipulation of the point- 
molecule u elements; then the equation 

w r g  = 7r (19) 

constitutes a QSPR-like equation, deduced from purely QMSM theoretical consid- 
erations. There is thus a capital difference between eqs. (15) and (19). Equa- 
tion (19) has been deduced from quantum mechanical considerations while 
equations like (15) are produced in a pure empirical context. But the interesting 
thing is the fact that eq. (19) somehow justifies eq. (15), when considering that 
QSAR-like parameters are nothing but rough approximations to QMSM or some 
appropriate transform. 

The nature of the transformation (18) can be observed from many points of 
view. Two of them, among many possibilities, will be briefly described. 

As a first example, let us suppose that the property or biological activity 7r 
appearing in eq. (19) has a macroscopic character; then eqs. (16) and (17), deduced 
in the quantum framework, are not so correct as in a microscopic environment. In 
this case the point-molecule ut elements can be transformed in some statistical 
mechanics fashion into gz elements, for instance, as 

g~t = Oexp[(uji - uH)/kT];  VJ, I , (20) 

where 0 is some normalization constant. 
The second example may serve to start the generalization of the molecular con- 

nectivity and related parameters. The main idea is based on the description and cal- 
culation algorithms of a new quantum related molecular topological descriptors 
parameter set [10]. It is possible to define the counterparts of many classical topolo- 
gical indices into the framework of the QMSM theory. For example, the elements 
of the topological matrix can be replaced by atomic ns shell orbital overlap inte- 
grals or more sophisticated measures like the ones described in section 2, tridimen- 
sional distances can be used instead of topological ones, effective charge para- 
meters can enter into the definition of new indices, and so on. Essentially, MO 
QMSM as discussed in [lc] or the related molecular self-similarities may be used as 
good candidates to QSPR parameters, substituting other concepts of empirical ori- 
gin. Then, these new quantum related topological indices have the possibility of 
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containing tridimensional information on the molecular  structures and, also, 
chemical structure information. In this context, this kind of  indices may  be able to 
distinguish rotamers,  conformers,  etc., contrary to the classical ones which 
cannot.  

As a final choice, the quantum molecular  similarity indices (QMSI)  will be 
described as a way to manipulate the original information on Q M S M  in the same 
way as done in eq. (18). QMSI  have been described since the first paper  on the sub- 
ject  [la, lc], and discussed later on in [lm]. The most  typical and well-known 
Q M S I  is the cosine-like one described by Carb6  et al. [1 a], which will produce  a vec- 
tor  g t  such as 

-1/2 
gJI = ujz(UjjUII)  ; V J .  (21) 

QMSI  may  be used as Q S P R  parameters  directly or suffer further t ransforma-  
tions. A discussion of  the QMSI  relationships will be performed elsewhere. 

8. Conclusions 

Quan tum molecular  similarity measures establish a non-empirical theoretical 
basis where Q S P R  or Q S A R  can be justified as scientific procedures.  Al though 
Q S P R  has been a very useful tool since early times in chemistry, a p r o o f  of  the 
appropr ia te  theoretical foundations is lacking. The present work  provides this need 
with a robust  structure based on quantum chemical considerations.  

The discrete representat ion of  both  an electronic density distribution and a con- 
venient operator ,  connected with a quan tum mechanical definition of  the expecta- 
tion value concept  and, through this way, with the evaluation of  molecular  
propert ies has been exposed. 
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